

Nursing Case Study Masters

Introduction

Summary of case

The case study is about a geriatric client aged 74 years with multiple medical conditions and immense health needs. The patient is a known diabetic client with hypertension, cellulitis and nephropathy. The management of such a client requires a broader approach and a multi-dimensional intervention (Rello et al., 2010). The main reason why I chose the patient as a case study was to enable me to understand the interplay of the multiple conditions viv-a-vis their impacts on a geriatric patient. The patient is also on several medications which will form a basis of learning as regards to poly-pharmacy and nursing care.

The study will also enable me to understand how to conduct a comprehensive assessment and manage a geriatric client with multiple health needs. This case study will decipher through the management of Mrs Rogers and formulate two comprehensive priority nursing care plans for the patient. The client also has emotional needs due to the fact that she lives alone with no relative around to confide in, thus the case study will also enhance my nursing management in non-pharmacological instances and psychological wellbeing.

Discussion

Trans-cultural nursing

Trans-cultural nursing refers to ways in which professional nurses interact with culture. The concept is a particular cognitive nursing speciality focusing on nursing phenomena, health, global cultures and comparative cultural caring. The concept helps nurses to provide culturally acceptable and appropriate care to their patients. The concept entails learning international health issues and cultures of different countries vis-à-vis professional nursing practice. The objectives of transcultural nursing is to advance the cultural competence of nurses globally, advance knowledge of the field through scholarship, develop ways of enhancing social change for cultural competence in nursing care, and to promote the efficient non-profit financial corporation.

Case review: cellulitis

Any form of compromise to the flow of blood caused by microvascular or macrovascular diseases such as diabetes and hypertension is associated with a poor sensation of lack thereof as a result of neuropathy thus predisposing one to infections particularly on the distal end of the lower limbs (Peate, 2016). Diabetic foot infections assume four forms, namely; cellulitis, soft-tissue and deep skin infections, acute and chronic osteomyelitis. Cellulitis is mostly confused for deep venous thrombosis due to the overlying symptoms of skin tenderness and warmth to touch.

Pathophysiology

The bacteria that exist on the skin as normal flora could gain access into the deeper tissues following cuts or skin breaks. Once the bacteria invade the skin, they disseminate rapidly, infecting the deeper layers of the skin to reach the bloodstream and the lymph nodes from where they spread throughout the body (Comer et al., 2015). The dissemination results in flu-like symptoms such as fever or chills. Cellulitis is commonly caused by *Streptococcus sp* (*alpha-hemolytic streptococci*) and *Staphylococcus aureus*, and *Bacteroides sp* of bacteria.

Skin injuries such as surgical incisions, insect bites, and cuts are the common portals of entry for the bacteria (In acton, 2012). Other common risk factors to the infection are a

previous positive history of cellulitis, obesity, poorly controlled diabetes, old age, intravenous drug use, pregnancy, burns, lymphedema, skin conditions that could cause skin breaks such as athlete's foot and eczema, and a weakened immune status such as is the case in prolonged use of corticosteroids, diseases that affect the flow of blood to the extremities such as varicose veins or chronic venous insufficiency, chemotherapy and HIV and AIDS.

Nursing assessment

Nursing assessment plays a key role in the management of patients as it enables the nurse to plan care and evaluates the interventions. The assessment of Mrs Barbara followed the ABCDE framework of the nursing assessment. The assessment starts by looking into the airway of the client for patency followed by the assessment of the breathing pattern and effort (In Acton, 2012). The latter led to the administration of oxygen to the patient via a face mask. The breath sounds were heard using the stethoscope. The circulatory status was also assessed by assessing the temperature. The disability status of the patient was also assessed by examining the level of hypoxia and hypercapnia and giving oxygen as required. The use of accessory muscles is also assessed. The circulatory status was also assessed by certain laboratory blood tests.

Exposure is also considered by observing the dignity of the patient and keeping them warm. Head and toe assessment was done to determine the risks to health. The first sign of cellulitis is usually a painful swollen reddish area that is tender to touch and feels hot. Other signs of cellulitis include skin ulcerations that grow rapidly, abscess formation, chills, shaking, lethargy, myalgia, and dizziness. Lethargy, drowsiness, red streaks, and

blistering commonly signify the dissemination of the disease, usually to the lymph nodes (In Acton, 2012).

Nursing diagnosis

Some of the nursing diagnoses that were identified after the assessment was ineffective tissue perfusion related to sepsis as evidenced by oliguria and acute pain related to cellulitis. The patient also had a self-care deficit and risk for impaired skin integrity. The diagnosis of cellulitis relies on history and physical examination of the patient and appropriate laboratory tests. The clinicians observe for the classical signs of warmth, pain, reddening, and swelling coupled with inflammation of the nearby lymph nodes (Comer et al., 2014). Cellulitis differs from erysipelas as it invades the inner tissues and is often associated with abscesses, carbuncles, and furuncles.

Planning

Planning of nursing care improves the efficiency of nursing practice and enhances continuity of care. The planning should include self-care, educational needs as well as the plan of treatment. Sepsis is a life-threatening condition that occurs as a result of the response of the body to an antigen leading to tissue and organ injury. The common signs of sepsis are mental changes, hypercapnia, increased heart rate, and changes in body temperature. In clients with a weakened immune system and those with extreme ages such as the very young and the elderly, the body temperature may be low (Brunner & Smeltzer, 2010). Mrs Rogers presented with a low temperature of 35°C, and an elevated heart rate of 104 beats per minute and a slightly elevated breathing rate of 23 breaths per minute.

Interventions

CASE STUDY

6

The Sepsis 6 bundle was used to manage the sepsis developed by Mrs Barbara. The framework was developed to help reduce the mortality rate of patients with sepsis, reduce the duration of hospital stay, and improve their management altogether. Sepsis Six bundles contain three therapeutic and three diagnostic criteria that should be observed within the first hour of sepsis management. The first step was to administer oxygen to the patient to reach a target of oxygen saturation above 94% followed by the collection of blood samples for culture (Peate, 2014). Depending on the results of the blood culture, appropriate antibiotics are administered intravenously. The fourth step involves measuring lactate levels and performing a complete blood count. The fifth step of the Sepsis Six Bundle included the commencement of intravenous fluid resuscitation followed by the final step that involves the accurate measurement of urine output. Nursing interventions should be based on prior assessment, diagnosis and planning. Antibiotics are usually prescribed for sepsis and cellulitis based on the isolated microbe and the presence of purulence. The most effective antibiotics for the infection are penicillins, macrolides, fluoroquinolones, and cephalosporin (Hamilton, 2015). Surgical management is usually the management of choice in cases where purulence is present. The latter is usually followed by antibiotic therapy for prophylaxis. Analgesic is also prescribed for pain, however, pain should be assessed as extreme pain may point towards necrotizing fasciitis.

The microbes that cause cellulitis are normal skin flora but could cause infection when they gain access to the usually sterile areas of the deeper tissues. The bacteria invade the inner tissues when the integrity of the skin has been altered such as by an insect bite, a gaze, cut, tattoos, animal or human bite, puncture wound or leg ulcers. Skin aspirations

and blood culture may not be helpful for non-purulent cellulitis. Ultrasound is used to identify abscesses in case of antibiotic failure. A Doppler scan done on the right leg ruled out deep venous thrombosis confirming the diagnosis of cellulitis type 4 with sepsis. Other tests include blood sample for Erythrocyte Sedimentation Rate (ESR), C - reactive protein (CRP), Full Blood Count (FBC), and blood culture. A swab is taken from the infected leg ulcer for culture to identify the offending microbe.

Conclusion

Critical analysis of the case study

Impacts of uncontrolled diabetes

Uncontrolled diabetes mellitus type 2 can lead to many complications such as nephropathy, neuropathy, retinopathy, foot damage, poorly healing wounds, cardiovascular diseases and skin conditions. Neuropathy is caused by the damage to the blood vessels supplying the nerves by the high blood glucose levels (Brill, 2012). This can lead to a gradual loss of sensation in the affected area. Nephropathy caused by diabetes can lead to a decreased urine output as is seen in Mrs Rogers' case. If left untreated, severe kidney damage can lead to end-stage renal failure.

Geriatric clients are at a higher risk of contracting cellulitis. Patients with uncontrolled diabetes are also at risk due to the detrimental impacts of the disease on the immune system. The blood supply to the lower extremities is compromised leading to foot ulcers or diabetic foot (Brill, 2012). If the blood glucose is poorly controlled, bacteria are able to multiply rapidly in the affected area and gain access into the bloodstream causing sepsis. Neuropathy causes the ulcers not to be painful; therefore, they frequently become infected resulting in sepsis.

Impacts of sepsis

Severe sepsis leads to insufficient blood flow and poor organ function of vital organs such as the kidney. Decreased tissue perfusion is seen in decreased urine output, high blood lactate, and low blood pressure. The hypotension is a result of higher cardiac output and decreasing systemic vascular resistance (Rello et al., 2010). The common locations for sepsis are primarily the abdominal organs, the skin, brain, urinary system, and the lungs. The result of the above is related symptoms such as nausea and abdominal pain, difficulty in breathing and decreased urine output.

Comprehensive nursing care plans

Acute pain related to cellulitis as evidence by self-report of pain intensity of 2/3 by the use of a numeric rating pain intensity scale.

Patient Name: Mrs Rogers						
Date of Birth: 15	Date of Birth: 15 th June 1943					
Assessment	Nursing	Goal	Interventions	Rationale		
	diagnosis					
Subjective data:	Acute pain	The patient will	The nurse will	Early		
The patient	related to	report pain	foresee the need	intervention in		
reported to	cellulitis as	relief at levels	for pain relief	pain relief		
experience a	evidence by	less than 1 on a	strategies.	strategies		
sharp shooting	self-report of	rating scale of 3		decreases the		
pain of the right	pain intensity	after 4 to 6		overall amount		
	of $2/3$ by the					

9

foot in a scale	use of a	hours of		of analgesics
				_
of 2/3.	numeric rating	interventions.		used.
Objective data:	pain intensity			
The right leg	scale.	By the end of	The nurse will	
was tender to		the day, the	acknowledge the	The perception
touch.		patient will have	pain reports	of time of the
Assess for signs		demonstrated an	promptly.	patient could be
that are related		improved health		distorted by a
to pain.		status such as		painful
Assess the		baseline levels		experience.
patient's		for respiration,		Pain could be
anticipation of		blood pressure,		aggravated by
pain relief and		pulse and		fear and
willingness to		posture.		anxiety which
participate in				can be avoided
pain relief		By the end of		by immediate
strategies.		the day, the		response to
		patient will have		pain.
		demonstrated a		Demonstration
		greater capacity		of concern for a
		of utilizing both		patient's
		pharmacological		comfort fosters

1	0
-	~

and non		o tmiotful
and non-		a trustful
pharmacological		relationship
methods of pain		between the
relief.		nurse and the
		patient.
By the end of	The nurse will	
the day, the	eliminate the	The patients'
patient will	sources of	ability to
display an	discomfort and	tolerate painful
improvement in	additional	stimuli may be
coping from	stressors to the	lowered if there
pain and general	patient.	are
mood.		intrapersonal or
		environmental
		factors
		stressing them.
	The nurse will	
	provide rest	The painful
	periods for the	experience of a
	patient to	patient could be
	promote pain	

1	1
- 1	
- 1	1

	relief, relaxation,	enhanced by
	and sleep.	exhaustion.
		Pain could
		increase fatigue
		which could
		further
		exaggerate
		pain.
		A quiet and
		peaceful
		environment
	The nurse will	promotes rest.
	determine the	
	appropriate	Patients who
	strategy of pain	experience
	relief.	acute pain
		should be given
		non-opioid
		analgesics
		unless
	The nurse will	contraindicated.
	administer IV	

1	2
- 1	1

	paracetamol 1g	Non-steroidal
	three times a day	anti-
	for three days.	inflammatory
		drugs
		(NSAIDS) such
		as paracetamol
		works in the
		peripheral
		tissues to block
		the synthesis of
		prostaglandins
		that stimulate
		nociceptors.
		The NSAID is
		effective in
		managing mild
		to moderate
	The nurse shall	pain.
	employ the use	
	of non-	Hot compresses
	pharmacologic	provide relief
	pain relief	from pain by

blocks the

	strategies such	improving
	as hot and cold	blood flow to
	compresses.	the affected
		area and
		reducing pain
		reflexes. Cold
		compresses
		reduce pain by
		lessening the
		rate of
		inflammation
		and spasticity
		of the muscles
		and lowering
		the production
		of pain-
		inducing
	The nurse will	chemicals.
	massage the	
	affected area	Massaging the
	when suitable.	affected area

14	
----	--

		transmission of
		pain, minimizes
		swelling as a
		result of
		oedema and
		increases
		endorphin
		levels.

Evaluation:

The patient reported relief from pain at a level of 1/3 in the numeric pain scale after 6 hours of nursing intervention.

The patient demonstrated improved health status by having baseline vital signs that fall within the normal range after 24 hours of nursing intervention. The temperature was 36.5°C, respiratory rate of 18 breaths per minute, a pulse rate of 82 beats per minute, and blood pressure of 110/70mmhg.

The patient demonstrated improved capacity to utilize both pharmacological and non-

pharmacological strategies of pain relief after 24 hours of nursing intervention.

The patient demonstrated appropriate coping strategies after 24 hours of nursing

intervention.

Ineffective tissue perfusion related to sepsis as evidenced by oliguria

Patient's Name: Mrs. Rogers					
Date of Birth: 15 th June 1943					
Assessment	Nursing	Goal	Interventions	Rationale	
	Diagnosis				
Assess for signs	Ineffective	After 24 hours	The nurse will	Various	
of ineffective	tissue perfusion	of nursing	submit the	diagnostic tests	
tissue perfusion.	related to sepsis	intervention,	patient for	are available	
	as evidenced by	the patient will	diagnostic	depending on the	
Assess for the	oliguria	maintain	assessments	cause of the	
possible		adequate tissue	as required.	condition.	
contributing		perfusion as		Doppler's scan,	
factors of		evidenced by		vascular stress	
impaired arterial		blood pressure		test and	
blood flow.		within the		angiograms	
		normal range,		could be helpful.	
Review		absence of			
laboratory data		edema, and a	The nurse will	Adequate fluid	
such as Arterial		urine output of	administer	intake optimizes	

Blood Gas,	at least 30mls	intravenous	cardiac output
electrolytes,	per hour.	fluids	and filling
creatinine levels,	The patient	(Hartman's	pressure required
and international	will exhibit	solution) as	for tissue
normalized	improved	ordered and	perfusion.
ratio.	tolerance to	check for	
	activities after	optimal fluid	
Assess for work	24 hours of	balance.	
breathing and	nursing		
the respiratory	intervention.	The nurse will	Assisting the
rate and	By the end of	assist the	patient with
patterns.	the day, the	patient with	position changes
	patient will	position	from a supine to
Assess for	exhibit no	changes.	sitting position
changes in blood	signs of sepsis.		reduces the risk
pressure and			for orthostatic
changes in			blood pressure
arterial oxygen.			changes.
Assess for			
changes in the		The nurse will	Understanding
		explain all the	the expected

	1
treatments	sensation and
and	events allays
procedures to	anxiety

the patient.		and	events allays
		procedures to	anxiety
Assess the fluid		the patient.	associated with
input and output			the unknown.
status of the			
patient.		The nurse will	Ciprofloxacin is
		administer	a broad-spectrum
		antibiotics as	antibiotic that
		ordered	belongs to the
		(Clindamycin	class of
		900mg TDS	fluoroquinolones.
		and	The antibiotic is
		ciprofloxacin	effective against
		400mg BD).	both Gram-
			negative and
			Gram-positive
			bacteria.
			Ciprofloxacin
			works by
			inhibiting DNA
			gyrase thus

mental status of

		stopping
		bacterial cell
		division.
		Clindamycin
		works similarly
		to macrolides by
		inhibiting
		bacterial protein
		synthesis and the
		translocation of
		ribosome.
	The nurse will	Ambulation and
	promote early	exercise prevents
	ambulation,	venous stasis that
	active and	could further
	passive range	compromise
	of motion	blood circulation.
	movements.	
	The nurse will	Oxygen therapy
	administer	saturates the

	oxygen	circulating
	therapy to the	hemoglobin thus
	patient as	augmenting
	required.	blood efficiency
		in reaching the
		ischemic organs.
	The nurse will	A semi-Fowler's
	position the	and high
	patient in a	Fowler's position
	semi-Fowler's	promotes
	or high	alveolar gaseous
	Fowler's	exchange.
	position as	
	tolerated.	
	The nurse will	Monitoring fluid
	monitor the	input and output
	fluid input	helps to detect
	and output	any fluid deficit
	status of the	or overload. A
	patient.	fluid output of at

CASE STUDY

1	Λ
1	U
_	\sim

		least 30mls per
		hour is an
		indication of
		adequate tissue
		perfusion.
	The nurse will	Keeping the
	keep the	extremities warm
	patient warm.	maintains
		vasodilatation
		thus improving
		blood flow to the
		affected area.
	The nurse will	Elevation of the
	elevate the	edematous limb
	edematous leg	reduces edema
	as ordered	and promotes
	and avoid	venous return.
	putting	Any pressure
	anything	under the knee

			below the	could limit
			knee.	venous return.
Evaluation:				I
The patient mainta	ained adequate tiss	ue perfusion after	24 hours of nurs	ing intervention as
evidenced by a blood pressure of 110/70 mmHg, and a urine output rate of 35mls per				
hour.				
The edema on the right foot of the patient subsided according to the mid calf				
circumference that dropped from 54cm to 46cm.				
The patient demonstrated an improved tolerance to exercises after 24 hours of nursing				
intervention.				

References

Brill, M. T. (2012). Diabetes. Minneapolis, MN: Twenty-First Century Books.

- Brunner, L. S., & Smeltzer, S. C. O. C. (2010). Brunner & Suddarth's textbook of medical-surgical nursing. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins.
- Comer, S., Jaffe, M. S., Teton Data Systems (Firm), & STAT!Ref (Online service).
 (2015). *Delmar's geriatric nursing care plans*. Australia: Thomson/Delmar Learning.
- Gulanick, M., & Myers, Judith L. (2014). *Nursing care plans*. St. Louis, Mo: Mosby Elsevier.
- Hamilton, P. D. J. D. P. E. A. (2015). Therapeutics and pharmacology for medical students. Place of publication not identified: Pastest.
- In Acton, Q. A. (2012). *Cellulitis: New insights for the healtcare professional :* scholarlypaper.
- Ignatavicius, D. D., & Workman, M. L. (2013). *Medical-surgical nursing: Patientcentered collaborative care*. St. Louis: Elsevier Saunders.
- Johnson, M. (2012). NANDA, NOC and NIC linkages: Nursing diagnoses, outcomes, & interventions. St. Louis, Mo: Mosby/Elsevier.

Lippincott Williams & Wilkins. (2009). Handbook of medical-surgical nursing. Ambler,

Pa: Lippincott Williams & Wilkins.

Peate, I. (2016). Medical-surgical nursing at a glance.

Rello, J., & Restrepo, M. I. (2010). Sepsis: New strategies for management. Berlin: Springer.